ANANNYA POPAT

+1(437) 566-0844 ♦ anannyap20@cs.toronto.edu ♦ LinkedIn ♦ GitHub ♦ Google Scholar ♦ Portfolio

EDUCATION

University of Toronto

Sept 2023 - Dec 2024

Masters of Science in Applied Computing, Artificial Intelligence Concentration

Vellore Institute of Technology (VIT), Vellore

Jul 2019 - Jul 2023

Bachelor of Technology in Computer Science and Engineering and Business Systems

CGPA: 9.17/10.0

RELEVANT SKILLS

Technical Skills Programming Languages Computer Vision, Deep Learning, Machine Learning, Computer Graphics, Data Science

Python, R, Java, JavaScript, SQL, HTML, CSS/Tailwind CSS, C, C++

Frameworks

PyTorch, Tensorflow, OpenCV, Scikit-Learn, Flask, Pandas, NumPy, Matplotlib, NiBabel,

VTK, Blender, Git, Linux, PowerBI, AWS

PROFESSIONAL EXPERIENCE

AI Research Intern, UHN, Canada — Python, Pytorch, C++, OpenCV, Generative AI

May 2024 - Dec 2024

- Led the development of an interactive 3D anatomical model from patient-specific CT scans to enhance surgical planning.
- Leveraged nnU-Net-based TotalSegmentator for precise tissue segmentation and implemented interactive 3D modeling using Visualization Toolkit (VTK) with Python, C++ and Blender.
- Fine-tuned a Neural 3D Mesh Renderer (achieving a 75% loss reduction on the **VGG19 Neural Network** model) and introduced an optimized initialization strategy with smoothing algorithms to eliminate artifacts for improved texture mapping using **PyTorch**.
- Performed a comparative study on texture extraction and mapping using Wavelet Transform, Gabor Filters, Neural 3D Style Transfer, and GramGAN, demonstrating up to 61.4% performance improvement of deep learning methods for realistic 3D texture mapping over traditional computer vision techniques using Python, OpenCV, and PyTorch.

Teaching Assistant, University of Toronto, Canada — Python, Teaching, Communication

Sep 2023 - Apr 2024

- Mentored students in the Introduction to Python course during the Fall 2023 and Winter 2024 semesters.
- Simplified complex concepts using relatable analogies and customized problem-solving strategies based on students' unique backgrounds.
- Tailored teaching approaches to accommodate diverse fields—such as management, psychology, and computer science—promoting clear understanding across multidisciplinary audiences.

Data Science Intern, AdGlobal360, India — Tensorflow, Python, Pandas, NumPy, Matplotlib

May 2022 - Jul 2022

- Developed a lead scoring prediction model leveraging Random Forests, Logistic Regression, and Deep Neural Networks, achieving a 95% F1 score in identifying potential buyers based on website activity.
- Conducted **exploratory data analysis and visualization** using **SQL**, **PowerBI**, **Python**, **NumPy**, **Pandas**, and **Matplotlib** to perform feature engineering and visually present key customer conversion factors for stakeholders, followed by **Machine Learning** modeling using **TensorFlow**.

KEY PROJECTS

Text-based 3D Gaussian Splatting Object Segmentation, 3D Sensing, University of Toronto

Apr 2024

Project Report: https://bit.ly/3DHHM2H — Python, PyTorch, Deep learning, Transformers, Gaussian Splatting

- Developed a 3D Gaussian Splatting segmentation model using LangSAM for text-driven 3D segmentation using Python.
- Devised an optimized prompt initialization strategy employing **K-means clustering** for optimal view selection and point sampling.
- Utilized Segment-Anything-Model (SAM) for mask generation and majority voting for final 3D Gaussian segmentation.
- Enhanced IoU by 3% and accuracy by 1% through k-means multiview point sampling compared to single-view method.
- Reduced computational requirement by retaining near-optimal results while using only 50% input data.

Ink-To-Tint: Manga Artisan, Computational Imaging, University of Toronto

Nov 2023 - Dec 2023

Project Report: https://bit.ly/49QWqAI — Python, PyTorch, Stable Diffusion, Generative AI, Computer Vision

- Automated manga colorization and style conversion to enhance readability and ease artists' workload.
- Optimized image processing techniques like **dodging** and **dilation** in **Python** to decolorize colored manga datasets.
- Developed a Pix2Pix **conditional GAN** in **PyTorch**, employing **CNN** for discriminator and a **U-Net** for generator, to successfully colorize black-and-white manga pages with a 55% decrease in MSE loss over 80 epochs.
- Fine-tuned a pre-trained **Stable Diffusion** model (MeinaMix v10) for manga style transfer across four distinct art styles.

Qualitative Badminton Player Analysis, Capstone Project, Vellore Institute of Technology

Jan 2023 - Mar 2023

Project Report: https://bit.ly/49Qd2J5 — Python, Tensorflow, OpenCV, Neural Networks, Computer Vision

- Developed a **computer vision** system for tracking player movements and classifying badminton strokes in broadcast videos.
- Tracked badminton players using the Particle Filter and custom jersey color detection algorithms with 99% accuracy.
- Predicted badminton strokes of player through Convolutional Neural Networks using OpenCV, Pillow, Python and Tensorflow with 81% accuracy.
- Detected court boundaries using image binarization, edge detection, Probablistic Hough Lines and K-Means clustering.

KEY PUBLICATIONS

Movie Poster Genre Classification using Federated Learning, Elsevier

Sep 2022

Dr. Boominathan Permual, Department of Computer Science, Vellore Institute of Technology Published Paper: doi.org/10.1016/j.procs.2023.01.177

- Pioneered an image-based movie genre classification algorithm using Federated Learning to prioritize data privacy of graphic content in the movie industry.
- Designed a decentralized federated architecture, enabling storage savings and local CNN training with distributed data.
- Achieved an 81% weighted average validation accuracy with a CNN model using TensorFlow and Pillow.
- Presented research at the International Conference on Machine Learning and Data Engineering to an expert panel.

Histology Classification for Early Gastric Cancer using AI Model, SAGES 2025

March 2025

Dr. Hoseok Seo and Dr. Amin Madani, Surgical AI Research Academy, UHN

- Fine-tuned a pre-trained **DenseNet201** model to classify histologic types in early gastric cancer (EGC) from endoscopic images using **PyTorch**, achieving 93.4% training accuracy and 74.0% internal validation accuracy.
- Preprocessed a dataset of 2,944 labeled images from 2,001 patients using **JSON**, **Python**, and **OpenCV** to train and validate the model on default and ROI-cropped images.
- Abstract accepted for publication in the **Surgical Endoscopy** journal by SAGES and selected for a podium presentation at the **2025 SAGES** Annual Meeting.